Chromatin structure analyses identify miRNA promoters.
نویسندگان
چکیده
Although microRNAs (miRNAs) are key regulators of gene expression in normal human physiology and disease, transcriptional regulation of miRNAs is poorly understood, because most miRNA promoters have not yet been characterized. We identified the proximal promoters of 175 human miRNAs by combining nucleosome mapping with chromatin signatures for promoters. We observe that one-third of intronic miRNAs have transcription initiation regions independent from their host promoters and present a list of RNA polymerase II- and III-occupied miRNAs. Nucleosome mapping and linker sequence analyses in miRNA promoters permitted accurate prediction of transcription factors regulating miRNA expression, thus identifying nine miRNAs regulated by the MITF transcription factor/oncoprotein in melanoma cells. Furthermore, DNA sequences encoding mature miRNAs were found to be preferentially occupied by positioned-nucleosomes, and the 3' end sites of known genes exhibited nucleosome depletion. The high-throughput identification of miRNA promoter and enhancer regulatory elements sheds light on evolution of miRNA transcription and permits rapid identification of transcriptional networks of miRNAs.
منابع مشابه
Features of Mammalian microRNA Promoters Emerge from Polymerase II Chromatin Immunoprecipitation Data
BACKGROUND MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of prote...
متن کاملTranscriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters
Synthetic small duplex RNAs that are fully complementary to gene promoters can silence transcription in mammalian cells. microRNAs (miRNAs) are endogenous small regulatory RNAs that sequence specifically regulate gene expression. We have developed a computational method to identify potential miRNA target sites within gene promoters. Ten candidate miRNAs predicted to target the human progesteron...
متن کاملHigh-Resolution Mapping and Characterization of Open Chromatin across the Genome
Mapping DNase I hypersensitive (HS) sites is an accurate method of identifying the location of genetic regulatory elements, including promoters, enhancers, silencers, insulators, and locus control regions. We employed high-throughput sequencing and whole-genome tiled array strategies to identify DNase I HS sites within human primary CD4+ T cells. Combining these two technologies, we have create...
متن کاملGenome-wide profiling of chromatin signatures reveals epigenetic regulation of MicroRNA genes in colorectal cancer.
Altered expression of microRNAs (miRNA) occurs commonly in human cancer, but the mechanisms are generally poorly understood. In this study, we examined the contribution of epigenetic mechanisms to miRNA dysregulation in colorectal cancer by carrying out high-resolution ChIP-seq. Specifically, we conducted genome-wide profiling of trimethylated histone H3 lysine 4 (H3K4me3), trimethylated histon...
متن کاملIdentifying transcriptional start sites of human microRNAs based on high-throughput sequencing data
MicroRNAs (miRNAs) are critical small non-coding RNAs that regulate gene expression by hybridizing to the 3'-untranslated regions (3'-UTR) of target mRNAs, subsequently controlling diverse biological processes at post-transcriptional level. How miRNA genes are regulated receives considerable attention because it directly affects miRNA-mediated gene regulatory networks. Although numerous predict...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 22 22 شماره
صفحات -
تاریخ انتشار 2008